
Birzeit University
FACULTY OF INFORMATION TECHNOLOGY

 Scientific Computing Master Program

USING DATABASE THEORIES IN SCIENTIFIC
APPLICATIONS

By

Saleem Ahmad Jayousi

Supervisors

Dr. Hassan Shibly

Dr. Samir Matar

August, 2007
 Birzeit, Palestine

Saleem Ahmad Jayousi USING DATABASE THEORIES IN SCIENTIFIC APPLICATIONS 2007

Table of Contents

Abstract ……………………………………………………………………… 1
Introduction ………………………………………………………………… 3

Chapter 1: Scientific Applications………………………………………….. 9

1.1 Introduction………………………………………………………….. 9
1.2 Classical Methods …………………………………………………... 9
1.3 Computing Scientific Applications…..……………………………… 13
1.4 Scientific Systems Data Properties..………………………………. 14
1.5 Conclusion…………………………………………………………... 18

Chapter 2: Qualifying Scientific Data.. 20
2.1 Introduction……………………………………………………….. 20
2.2 Elements Object…………………………………………………… 23
2.3 Functional Unit Object……………………………………………. 25
2.4 Organic Requirements Unit ………………………………………. 25
2.5 Relations Object…………………………………………………… 26
2.6 Scientific Data Aggregation………………………………………. 27
2.7 Conclusion………………………………………………………… 30

Chapter 3: Data Models Concepts……………………………………….. 31
3.1 Introduction………………………………………………………. 31
3.2 Main Concepts in Database………………………………………. 31
3.3 Data Modeling Levels…………………………………………….. 32
3.4 Structures………………………………………………………….. 33
3.5 Constraints…………………………………………………………. 34
3.6 Operations…………………………………………………………. 36

Chapter 4: Hierarchal Modeling for Scientific Applications…………… 38
4.1 Introduction………………………………………………………… 38
4.2 modified Preorder Tree Traversal………………………………….. 41
4.3 System Error Detection…………………………………………….. 47
4.4 Adding New Scientific Unit to the System…………………………. 49
4.5 How many Descendants…………………………………………….. 51
4.6 Retrieve the Block Diagram of The Scientific Application…………. 52
4.7 Disadvantages of Using Hierarchal Design In Scientific Modeling… 56
4.8 Conclusion ………………………………………………………… 57

Chapter 5: Using Relational Model in Scientific Applications…………… 59

5.1 Introduction………………………………………………………….. 59
5.2 Structures of Relational Model……………………………………… 63
5.3 Constraints in Relational Model…………………………………….. 69
5.4 Operations on Relational Model…………………………………….. 71
5.4.1 Navigation Operations on Relational Model…………………….. 71
5.4.2 Specification Operations on Relational Model…………………... 74

5.5 Conclusion…………………………………………………………... 76

II

Chapter 6: Using Entity Relationship Model in Scientific Applications..... 77

6.1 Introduction………………………………………………………….. 77
6.2 Structures of Entity Relationship Model…………………………….. 78
6.3 Constraints in Entity Relationship Model…………………………… 83
6.4 Operations on ER Model…………………………………………….. 86
6.5 Conclusion…………………………………………………………... 89

Chapter 7: Using Network Data Model in Scientific Applications……….. 92

7.1 Introduction………………………………………………………….. 92
7.2 Structures of Network Model………………………………………... 92
7.3 Constraints in Network Models……………………………………... 97
7.4 Operations on Network Models……………………………………... 100
7.4.1 Navigation Operations…………………………………………… 100
7.4.2 Specification Operations…………………………………………. 102

7.5 Conclusion…………………………………………………………... 104

Conclusion……………………………………………………………………. 106

Appendix A: EF Codd's 12 Database Rules……………………………….. 108

Appendix B: R Series RAW Power Supply Manual……..……………….. 118

References……………………………………………………………………. 126

III

Abstract

Traditional methods used for describing scientific methods

such as manuals must be replaced. Those old methods consume a lot

of time in designing and analyzing.

Any machine were bought to home, office or company should

be supported by electronic catalog, this catalog depends on database

management. So technician and engineer refers to this

programmable catalog to find errors or develop the system.

Scientific systems described by data, so database models must

be used to manage those data. Actually using data management

theories and methods make it easy to understand the system, detect

its errors, develop it and trace it.

Each database method can serve managing scientific systems

in a different matter, so each one has its advantages and

disadvantages.

Using data models for scientific applications give the

following benefits:

1- Make it easy to understand models.

2- When manipulating these models by computers, make it

easy to answer requests and get results quickly.

1

3- Gives accurate answers for user queries.

Hierarchal data model draws the systems exactly, make it

easy in detecting system errors. And ease the system improvements.

It may take a time in system design specially in big systems. It also

limits some relations between system functional units and parts.

Entity Relationship (ER) Data Model seems to be the most

suitable model. ER model can represent entities and the relationship

between them completely. All functional links can be represented in

ER model. ER model allows recursive links.

Relational model suffers because it can't represent

relationships obviously. Relational model disallow recursive links.

Network Model represents entities and relationships. Many to

many relationships can't be represented directly in Network Models.

Recursive links disallowed in this model.

2

Introduction

Over the past several years, there has been an explosion in the

amount of information available to both business and scientific

enterprises. Individuals and corporations routinely use computers

both to record proprietary information and to distribute public

information via the WWW.

The challenge facing data managers today is how to fully

utilize this wealth of information without overwhelming either the

end user or the system maintainers. Because of the competitive

advantage provided by better data analysis, business information

processing has driven technological advances in data warehousing

and analytic processing. Within this community, relational databases

are accepted as standards for transaction-based systems and SQL

provides a consistent, well-known data access and manipulation

language. Several commercial tools, from companies such as Red

Brick, Cerebellum, Sugent, Informatics, VIT, and many others,

address the steps involved in creating, maintaining, and analyzing a

warehouse.

Unfortunately, scientific applications face unique problems

that are not being addressed by those tools. While part of the

3

problem arises from the lack of standardization in scientific domains

for example, information sources do not share a common

terminology, data representation, or data management architecture

the primary problems are the subtle but complex relationships

between data and the dynamic source schemata [18].

The inability to fully utilize the wealth of publicly available

information is a significant problem for scientific domains in

general. While commercial products are currently available, they are

focused on business applications and do not meet the unique needs

of scientific domains. In particular, they do not address either the

subtle data integration issues resulting from the complex

relationships between scientific data, or the more obvious schema

integration issues resulting from the dynamic nature of the sources.

The scientific applications contain a lot of elements, such as

chemical, mechanical or electronic parts. Manuals usually have

block diagrams that explain these applications which always hard to

understand and trace system through it.

Computation the Scientific applications data seems to be very

important. It is the best replacement for catalogs and diagrams.

4

Computing any system stands basically on application

database. Scientific applications database are manipulated to be

partitioned to data modules, and then these data can be computed, so

it become easy to be analyzed and understood.

The problem is how to qualify applications data to be data

based and which database theory serves more scientific applications.

The most important theories in database are hierarchal, Relational,

Entity Relationship, Network theories. Properties of each one, and

which serves scientific applications more will be discussed.

Data warehouses and data marts have been successfully

applied to a multitude of commercial business applications. They

have proven to be invaluable tools by integrating information from

distributed, heterogeneous sources and summarizing this data for use

throughout the enterprise. Although the need for information

dissemination is as vital in science as in business, working

warehouses in this community are scarce because traditional

warehousing techniques don’t transfer to scientific environments.

There are two primary reasons for this difficulty. First,

schema integration is more difficult for scientific databases than for

business sources, because of the complexity of the concepts and the

5

associated relationships. While this difference has not yet been fully

explored, it is an important consideration when determining how to

integrate autonomous sources. Second, scientific data sources have

highly dynamic data representations (schemata). When a data source

participating in a warehouse changes its schema, both the mediator

transferring data to the warehouse and the warehouse itself need to

be updated to reflect these modifications. The cost of repeatedly

performing these updates in a traditional warehouse, as is required in

a dynamic environment, is prohibitive [18].

Till this moment Database serves sincerely management and

financial systems. In this thesis the validity of serving database for

scientific systems will be checked.

The main objective in this thesis is to “Setup main outlines

for a new mechanism called Database Modeling for Scientific

Systems (DMSS), which will serve experts in analyzing scientific

systems”.

The following table illustrates some applications which served

by database systems.

 Application Database Theories Support Software Support

6

Hospital

Patients

Table

 Doctors

Table

Departments

Table
##
##
##

Relational, Entity Relationship,
Network Theories Can Support

Oracle, SQL,
Access software

can
support.

Company
Employees

Table

 Stores

Table

Sales

Table
##
##
##

Relational, Entity Relationship,
Network Theories Can Support

Oracle, SQL,
Access software

can
support.

Electrical Control System

? ?

First chapter will discuss the traditional methods used to

explain and analyze scientific systems, its difficulties and

disadvantages. And the imperative degree of scientific systems for

computing method will be discussed.

The second chapter tries to start drawing the outlines of

computing scientific applications. Thesis will discuss how to

manipulate and manage scientific applications data to be qualified

for data basing then computing.

7

patientsdoctors Rooms departments

Employees Stores Sales departments

Motors Sensors Power
Supplies

 Emmiters

Third chapter explains the meaning of database, database

model and what the main factors in scientific database design are.

Up to The fourth chapter, applying the new mechanism

(DMSS) in scientific systems will start. The most famous theories in

database will be used to serve scientific applications. Then a

comparison between database theories will be made; this

comparison will be from scientific systems viewpoint.

Chapter 1

Scientific Applications

8

1.1 Introduction

Scientific application is any system contains modules and

elements work in a tidy way to achieve a productive process. For

example car, computer, plane, and washing machine are scientific

applications.

Scientific applications usually designed by Specialists and

engineers. When the end user starts using the application it may

need to be maintained, developed, or analyzed. So designers try

hardly to provide catalogs and diagrams with machines to make it

easy to understand its operation.

1.2 Classical Methods

Scientific systems designers provide classical methods with

machines to help engineers in maintenance procedures, those

methods are:

A- Manuals: it is a documentation comes with machine, usually

includes a descriptive information or illustrations about the machine,

its internal structure and how does it work, etc. for example the

following power supply has a catalog from TDK company:

Product Catalog

Power Supply AC Input

9

Single Output, Long Life, UL/C-
UL/TÜV Approved
By TDK company

Fig 1-1 catalog as a traditional illustration method

B- Illustrative Diagrams: it is a drawn diagram or figure contains the

parts of the system. It can be a block diagram consists main modules

of the system, or a detailed map covers all parts in the system. The

following figure explains a Diagram which comes with Hybrid

Engine Vehicle of a car:

Product Block Diagram
Car

10

Fig 1-2 Car hybrid engine vehicle block diagram

The disadvantages of the above methods are:

1- It is difficult for experts to trace the product parts and

relationships.

2- Maintenance is hard because of the complex relations.

3- It is hard to develop the product, because modules are not

obvious.

Example 1.1: an expert needs a power supply for some application.

He obtained a TDK power supply catalog. TDK power supply

catalog (Appendix B) which illustrates the characteristics and

specifications for the power supply family products (more than one

type).

11

The expert wants a power supply with some limitations to be

suitable with the application. The limitations and conditions which

application needs are:

1- Power Supply must afford heat temperature 70ْ C at least.

2- Power supply must provide current up to 60 A.

3- Power supply must have Current Balance (CB) Terminal (T6).

CB terminal is used when several power supplies are connected in

parallel to connect the respective CB terminals.

4- The shock pulse duration of the power Supply must be in range

(6-16) ms.

TDK power supply catalog gives full information about 4

types of power supply in the same family. These types are RAW

100W, RAW 175W, RAW 350W and RAW 1.5KW.

Catalog in appendix B contains 7 tables and 1 diagram, so

exploring the catalog is not easy as thought, because tables is not

specialized obviously for each type, it is mixed and complex.

Now the engineer will read the catalog (Appendix B) to find

which product suitable for his application.

The power supply which will apply all conditions and

limitations mentioned before is RAW 1.5 KW. It takes a lot of time

12

to get this result, it is hard to read, relate, explore and find small

information from this catalog. So another mechanism needed to save

time and effort.

1.3 Computing Scientific applications

Scientific applications must be computed because of the

difficulties in exploring and tracing systems through classical

methods. Computing scientific applications will facilitate and

quicken the following actions:

1- Exploring and tracing scientific application components.

2- Discovering relations between application parts and modules.

3- Maintenance of the application and determining the error

location.

4- Developing the system.

Computing any application will stand basically on Database

offered by the system. In fact scientific applications have the factors

and elements which qualify it to be data based, then computed.

These factors are:

1- Its characteristics and standards are data and can be stored.

13

2- Scientific applications partitioned into modules and structures,

each module contain its own data. So in computer language it

contains objects.

3- Structures of the scientific applications are related, so

relationships exist in any application.

Data, objects and relations are the main components of any

database, so scientific applications can be computed. Database

theories will be used to serve in analyzing and drawing the data of

any application

1.4 Scientific Systems Data Properties

Data in scientific applications will face some processes, these

processes are:

1.4.1 Constraining: limitations and boundaries on data, these

limitations can be divided into two parts:

A. Inherent constraints: means a certain data must be related in its

value with another value. This means limitation comes from relation

with another item.

 For example figure 1-3 represents a block diagram for

computer architecture. Now The question is: Can technician

connect CD-ROM 16X with data bus width = 32-bit? The answer is

14

No, because data bus width of any device connected to PC like CD-

ROM must be equal or greater than Local bus data width. The

observer for block diagram will not easily notice that.

Fig 1-3 Pentium4 PC Block Diagram

So the data bus width for any peripherals connected to PC is

limited by the data bus width of the main local bus. This limitation

on peripheral data bus width is called inherent constraint in data.

B. Explicit constraints: restrictions and boundaries user puts on a

certain item in data for scientific reason.

15

For example figure 1-4 shows a part of catalog supports

washing machine structure, it contains block diagram and the

components of inverter module.

Inverter Unit Components

Capacitor
Type

Dimensions
(mm)

Temperature
characteristics

Rated voltage
(V)

Capacitance range

CC45 5.5 to 16x5/6x5/7.5/10 SL 1 to 3 10 to 1,000pF

CD 7.5 to 15.5x8x10 E 250, 400 680 to 4,700pF

CS 12/16.5x7x7.5/10 E 250, 400 1,000 to 4,700pF

Inductor
Type

Dimensions (mm) Inductance range Rated current

TSL0709 OD7.7x9.5 1 to 1,500microH 160 to 6,600mA

TSL0808 OD8.5x8.3 2.2 to 4,700microH 130 to 5,600mA

TSL1112 OD11.2x12.2 1.0 to 15,000microH 120 to 1,400mA

TSL1315 OD14x17 10 to 10,000microH 240 to 12,000mA

Fig 1-4 A part of Washing Machine Catalog

16

Note that the designer limited the following:

1- Rated Voltage for capacitors. Ex: CC45 voltage (1-3)v.

2- Capacitor Range. Ex: CD 680-4700 pF.

3- Inductance range for inductors. Ex: TSL0709 1-1500 microH.

4- Rated current for inductors. Ex: TSL1315 240-12,000 mA.

These borders for values were put by designer to make

machine operating safely. It came from some mathematical

calculations. It is an example for Explicit constraints.

1.4.2 Exploring Exploring means discover and survey the internal

components and relations inside the system. User can explore

through two ways which are:

a- Unlimited Exploring: it means to start reading the catalog

and looking on block diagrams without specifications or

concentrating on some elements. For example user wants to view all

capacitors on inverter unit (return for washing machine catalog), so

he will find:

Table 1-1 Unlimited Exploring

Capacitor
Type

CC45

CD

CS

17

b- Limited Exploring: means that user wants to look on a

specific thing with some conditions. For example (return to washing

machine catalog) user want view only capacitors on inverter unit

work on 400 v, so he will find:

Table 1-2 limited Exploring

Capacitor
Type

Rated voltage
(V)

CD 250, 400

CS 250, 400

1.5 Conclusion

 Modern scientific systems are so complicated. Designers

provide catalogs, maps and block diagrams to illustrate the system

components and its work. Those illustration methods are hard to be

understood and analyzed. Hence scientific applications must be

computed to save time and effort.

 Computing any system stands basically on database. Scientific

application can be data based, and so computed. It has data, objects

and relations, those are the factors for data basing.

18

 Processes applied on applications data are exploring and

constraining. So database and computer must serve in ease those

processes.

 Next chapter will discuss how to qualify catalogs and block

diagrams to be data based, what is the requirements and the steps to

setup database systems.

19

Chapter 2

Qualifying Scientific Data

2.1 Introduction

This chapter will discuss the steps needed to qualify scientific

applications data to be a formal database capable for computing.

Usually engineers design catalogs and block diagrams to be

understood from experts, but up to now data will be manipulated to

give programmers the ability for analyzing, storing and

programming.

This example related to engine control management (ECM)

for a car. Figure 2-1 illustrates the block diagram for the ECM and

the main elements inside each unit.

From database management viewpoint, If the data provided in

tables have been stored as it, the following problems will be faced:

1. A lot of redundancy. For instance see chip capacitor

how many times was it repeated.

20

(1)Air Flow Sensor

NTC thermistors
NTCDS Series

Chip capacitors
C Series

Chip beads
MMZ Series

(4)Electric Purge Control Valve

Geartooth Sensors
GTS Series

Sinter metal parts
3,M Series

(7)ECM

NTC thermistors
NTCDS Series

Chip varistors
AVR-M Series

Chip capacitors
C Series

Chip capacitors for mid voltage
C Series

Common mode filters
ACT Series

Common mode filters
ZJYS Series

Power inductors
SLF Series

Transformers
SRW Series

(10)EGR(Exhaust Gas Recirculation)

(2)Fuel Pump

Chip capacitors
C Series

Radial leaded capacitors
FK Series

Differential mode choke coils
SF Series

Inductors
AML Series

Ferrite magnets
FB Series

(5)Fuel Injector unit

Chip varistors
AVR-M Series

Chip capacitors
C Series

Chip capacitors for mid voltage
C Series

Differential mode choke coils
SF Series

Common mode filters
ACT Series

Power inductors
SLF Series

(8)Voltage Regulator

Chip capacitors
C Series

(3)Electronic Throttle Control Valve

Geartooth Sensors
GTS Series

Chip capacitors
C Series

Chip capacitors for mid voltage
C Series

Rare earth magnets
REC Series

Ferrite magnets
FB Series

(6)Water Pump (Electric)

Chip capacitors
C Series

Differential mode choke coils
SF Series

Rare earth magnets
NEOREC Series

Ferrite magnets
FB Series

(9)Oil Pump(Electric)

Chip capacitors
C Series

Differential mode choke coils
SF Series

Rare earth magnets
NEOREC Series

Ferrite magnets
FB Series

21

http://www.tdk.co.jp/series_e/e_3fb.htm
http://www.tdk.co.jp/series_e/e_3fb.htm
http://www.tdk.co.jp/series_e/e_3neorec.htm
http://www.tdk.co.jp/series_e/e_3neorec.htm
http://www.tdk.co.jp/series_e/e_9sf.htm
http://www.tdk.co.jp/series_e/e_9sf.htm
http://www.tdk.co.jp/series_e/e_4c.htm
http://www.tdk.co.jp/series_e/e_4c.htm
http://www.tdk.co.jp/series_e/e_3fb.htm
http://www.tdk.co.jp/series_e/e_3fb.htm
http://www.tdk.co.jp/series_e/e_3neorec.htm
http://www.tdk.co.jp/series_e/e_3neorec.htm
http://www.tdk.co.jp/series_e/e_9sf.htm
http://www.tdk.co.jp/series_e/e_9sf.htm
http://www.tdk.co.jp/series_e/e_4c.htm
http://www.tdk.co.jp/series_e/e_4c.htm
http://www.tdk.co.jp/series_e/e_3fb.htm
http://www.tdk.co.jp/series_e/e_3fb.htm
http://www.tdk.co.jp/series_e/e_3rec.htm
http://www.tdk.co.jp/series_e/e_3rec.htm
http://www.tdk.co.jp/series_e/e_4c.htm
http://www.tdk.co.jp/series_e/e_4c.htm
http://www.tdk.co.jp/series_e/e_4c.htm
http://www.tdk.co.jp/series_e/e_4c.htm
http://www.tdk.co.jp/series_e/e_bgts.htm
http://www.tdk.co.jp/series_e/e_bgts.htm
http://www.tdk.co.jp/series_e/e_4c.htm
http://www.tdk.co.jp/series_e/e_4c.htm
http://www.tdk.co.jp/series_e/e_5slf.htm
http://www.tdk.co.jp/series_e/e_5slf.htm
http://www.tdk.co.jp/series_e/e_9act.htm
http://www.tdk.co.jp/series_e/e_9act.htm
http://www.tdk.co.jp/series_e/e_9sf.htm
http://www.tdk.co.jp/series_e/e_9sf.htm
http://www.tdk.co.jp/series_e/e_4c.htm
http://www.tdk.co.jp/series_e/e_4c.htm
http://www.tdk.co.jp/series_e/e_4c.htm
http://www.tdk.co.jp/series_e/e_4c.htm
http://www.tdk.co.jp/series_e/e_9avr_m.htm
http://www.tdk.co.jp/series_e/e_9avr_m.htm
http://www.tdk.co.jp/series_e/e_3fb.htm
http://www.tdk.co.jp/series_e/e_3fb.htm
http://www.tdk.co.jp/series_e/e_9sf.htm
http://www.tdk.co.jp/series_e/e_9sf.htm
http://www.tdk.co.jp/series_e/e_4fk.htm
http://www.tdk.co.jp/series_e/e_4fk.htm
http://www.tdk.co.jp/series_e/e_4c.htm
http://www.tdk.co.jp/series_e/e_4c.htm
http://www.tdk.co.jp/series_e/e_6srw.htm
http://www.tdk.co.jp/series_e/e_6srw.htm
http://www.tdk.co.jp/series_e/e_5slf.htm
http://www.tdk.co.jp/series_e/e_5slf.htm
http://www.tdk.co.jp/series_e/e_9zjys.htm
http://www.tdk.co.jp/series_e/e_9zjys.htm
http://www.tdk.co.jp/series_e/e_9act.htm
http://www.tdk.co.jp/series_e/e_9act.htm
http://www.tdk.co.jp/series_e/e_4c.htm
http://www.tdk.co.jp/series_e/e_4c.htm
http://www.tdk.co.jp/series_e/e_9avr_m.htm
http://www.tdk.co.jp/series_e/e_9avr_m.htm
http://www.tdk.co.jp/series_e/e_bntcds.htm
http://www.tdk.co.jp/series_e/e_bntcds.htm
http://www.tdk.co.jp/series_e/e_bgts.htm
http://www.tdk.co.jp/series_e/e_bgts.htm
http://www.tdk.co.jp/series_e/e_9mmz.htm
http://www.tdk.co.jp/series_e/e_9mmz.htm
http://www.tdk.co.jp/series_e/e_4c.htm
http://www.tdk.co.jp/series_e/e_4c.htm
http://www.tdk.co.jp/series_e/e_bntcds.htm
http://www.tdk.co.jp/series_e/e_bntcds.htm

NTC thermistors
NTCDS Series

Ferrite magnets
FB Series

(13)Radiator Temperature Sensor

NTC thermistors
NTCDS Series

(11)Starter

Rare earth magnets
NEOREC Series

Ferrite magnets
FB Series

(14)Radiator Cooling Fan

Ring varistors
VAR Series

Inductors
AML Series

Ferrite magnets
FB Series

(12)Starter Generator

Rare earth magnets
NEOREC Series

Ferrite magnets
FB Series

Fig. 2-1 Engine Control Management (ECM) catalog

2. No functional dependencies appear obviously for us.

For instance does the unit “electric purge control valve” relate

to the unit “ear flow sensor”?

3. Tracing the data is difficult.

4. Some important elements don’t appear clearly in tables.

For instance ECM will not work without fuel or electricity. So

an important functional dependency ambiguous in tables.

From this example and a lot of other examples the following

absolutes for the modern scientific applications can be noticed:

A. One element may be shared through a lot of units.

 (Redundancy)

B. Functional dependencies exist in every application.

C. Organic requirements needed for each application.

22

http://www.tdk.co.jp/series_e/e_3fb.htm
http://www.tdk.co.jp/series_e/e_3fb.htm
http://www.tdk.co.jp/series_e/e_3neorec.htm
http://www.tdk.co.jp/series_e/e_3neorec.htm
http://www.tdk.co.jp/series_e/e_3fb.htm
http://www.tdk.co.jp/series_e/e_3fb.htm
http://www.tdk.co.jp/series_e/e_9var.htm
http://www.tdk.co.jp/series_e/e_9var.htm
http://www.tdk.co.jp/series_e/e_3fb.htm
http://www.tdk.co.jp/series_e/e_3fb.htm
http://www.tdk.co.jp/series_e/e_3neorec.htm
http://www.tdk.co.jp/series_e/e_3neorec.htm
http://www.tdk.co.jp/series_e/e_bntcds.htm
http://www.tdk.co.jp/series_e/e_bntcds.htm
http://www.tdk.co.jp/series_e/e_3fb.htm
http://www.tdk.co.jp/series_e/e_3fb.htm
http://www.tdk.co.jp/series_e/e_bntcds.htm
http://www.tdk.co.jp/series_e/e_bntcds.htm

A new successful mechanism for drawing scientific data is

suggested here, it is suggested to partition scientific application

data elements to the following objects:

1. Elements object: depend on their scientific unit (ex:

Ohm, Farad, Centigrade)

2. Functional units object: includes the main units.

3. Organic requirements unit: like electricity, fuel.

4. Relations Object: defining relations between other

objects

This new mechanism will decrease redundancy, draws the

relations obviously and can be computed easily.

2.2 Elements Object: collect elements depend on their units. For

instance F for capacitors, Ω for resistors and H for inductors. Hence

collections will be as follows:

ECM

Functional
Units

Example:
Air Flow Sensor
Fuel Pump
Control Valve

Elements
Example:
Capacitors
Inductors
Thermistors

Organic
Components

Example:
Fuel
Electricity
Water

Relation

Fig 2-2 : New Suggested Generalization Mechanism

23

 (a) (b) (c)

Fig. 2-3 Generalization depend on unit

In figure 2-3 it seems that ferrite magnets and earth magnets

have the same unit which is Br (flux density unit), so it can be

generalized in one entity “Magnets”. And the same for AML

inductors and power inductors have the unit H (Inductance unit) so it

can be generalized in one entity (Inductors). Chip capacitors and

leaded capacitors in figure c determined by V, ْC and F which are

(Voltage, Temperature and Capacitance units) so it can be

generalized in one entity (Capacitors).

After generalizing the elements depend on their units we

generalize again the new generated entities. See figure 2-4.

Fig. 2-4 Main and final generalization

Magnets

Ferrite
Magnets

Earth
Magnets

Inductors

Inductors
AML Series

Power
Inductors

Capacitors

Chip
Capacitors

Leaded
Capacitors

24

Magnets Inductors Capacitors

Elements

2.3 Functional units object: generalizing depend on functions, so

generalizing entities by abstracting air flow sensor, fuel pump,

electronic throttle control voltage,….etc.

Fig. 2-5 Functional Generalization

2.4 Organic requirements unit: as a matter of fact any applications

energy, it may be fuel, electricity, oil …etc, so those requirements

cant be ignored in database model.

Fig 2-6 Organic requirements unit

(1)Air Flow
Sensor

(13)Radiator Temperature
Sensor

Sensors Fuel Controllers

(5)Injector
unit

(3)Throttle
Control Valve

(4)Purge
Control Valve

Functional Units

25

Main Model

Fuel Electricity

Note that those requirements must be connected directly to the

main grandfather of the model. Because there is no meaning to

analyze model operation without those organics.

2.5 Relations Object: the relations between elements and functional

units are very important to be registered. No way to repair or

develop any machine without realizing the relation between its parts.

Returning to the previous example there is “radiator Temp

sensor” and “radiator cooling fan”, here it is clear that a functional

dependency exist, in fact it is a relation.

Fig 2-7 Functional dependency between units

Another example, the unit “EGR (Exhaust Gas

Recirculation)” have many “elements”, hence a relation exist

between “EGR Unit” and “Elements unit”.

Fig 2-8 Relation between Units

We now generalize the units obtained in the last steps.

Radiator Sensor Radiator CoolerFunctional Dependency “Relation”

EGR(Exhaust Gas Recirculation) Elements
Relation

26

Fig 2-9 Full Generalized Data for a scientific application (Engine Control
Management (ECM) for a car)

2.6 Scientific Data aggregation

It is the abstraction by which data is constructed form its

constitute objects. For instance electronic elements can be

characterized by its type, number and location on the machine. See

figure 2-10.

Aggregation as a form of abstraction is very helpful because it

gradually makes visible the structure of an object and how the

Element

Type Numbe
r

locatio
n

Fig 2-10 Data aggregation

27

individual components of the object are related to it and to each

other.

Example: a TV schematic describing TV components and unit

functions. Schematic used for repair and explore the TV circuits.

Fig 2-11 TV circuit diagram

28

Any one can see that it is hard to understand, analyze, or trace

this map, so our strategy we will be applied to Redraw this map but

from database viewpoint.

First: Elements Object

We gather the elements having the same property in one entity, so

the list of entities in “Elements Object” are:

a- Resistors.

b- Diodes.

c- Capacitors.

d- Coils.

e- Transistors.

f- Fuses.

g- Crystals.

Second: Functional Units object

We now generalize circuits depend on functions, so the following

Functional Units will be obtained:

1- Power Supply:

a. Low Voltage Supplies unit.

b. Standby unit.

2- Regulation Circuit Unit.

29

3- ON-OFF Unit:

a. u/Processor Unit.

b. Startup Unit.

4- Deflection Unit:

a. Horizental Unit.

b. Vertical Unit.

5- Audio Unit.

Third: Organic Requirments Object:

• AC power.

Hence our database view for our TV system will be:

Fig 2-12 Database View for TV

TV

Elements Object

Resis

Diode

Cap

Coils

Trans

Cryst

Fuses

Functional
Unit

Power
Supply

Stand
Unit

LV
Unit

Regul
Unit

ON-OFF
Unit

Start
Unit

Proc
Unit

Audio
Unit

Deflection
Unit

Ver
Unit

Hor
Unit

AC Power

30

Those above objects will be exploited by database

management systems theories to be ready for computing.

2.7 Conclusion

In this chapter discusses how to rearrange scientific data in a

manner suitable for database. A mechanism for analyzing scientific

system will be produced; this mechanism stands on partitioning any

scientific system to objects which are Elements, Functional and

Organic units Object.

Chapter 3

Data Models Concepts

3.1 Introduction:

This chapter focuses on the definition of data, database and

data models. Also this chapter outlines the factors taken in response

when comparing between data models.

3.2 Main Concepts in Database

Data corresponds to discrete recorded facts about

phenomenon from which we gain information about the world.

Data model: it is an intellectual tool that provides such an

interpretation. Data model is a model about data by which a

reasonable interpretation of data can be obtained. So it is an

31

abstraction device that allows us to see information content of data

as apposed to the individual values of data.

Several data models used to represent data, but each data

model has advantages and disadvantages depend on who is doing the

schema design, and the field in which one is working [12].

Scientific system modeling aims to increase understanding

some mechanisms in the process, and to optimize system behavior

[15].

Schema: is a generic concept which identifies categories, their

properties and relationships between them.

Database: a collection of data structured in particular way as

related in a schema [17].

It is so important in data modeling to have the ability of

hiding details and concentrate on general, that what is called The

Abstraction of data base [14].

The abstraction of data comes through:

1- Obtain categories of data.

2- Combine categories into more general category.

32

Consistency can be reduced by eliminating redundant data.

Redundancy Elimination leads to a simpler conceptual model which

more accurately reflects the real world [13].

3.3 Data modeling levels

There are two levels in data modeling are:

1- Infological modeling level: based on creation a

scientific model from user viewpoint. We get this level by

what's called enterprise description.

Enterprise description describes the information requirements

which used mainly for infological purposes.

2- Datalogical modeling level: focuses on design systems

to achieve the information requirements from computer

viewpoint. This level uses database description [17].

Data models created in the 1970s increased the independency

between data modeling and programming [6]. Hence one can design

a data model for scientific applications without any background in

programming.

The steps of designing a scientific database model are:

1- Abstract and understand concepts about application.

33

2- Capture all modules and parts contribute in the

scientific system.

3- List the properties of these parts, is it integrated? or

separated?.

4- Determine which model suitable for each system.

3.4 Structures:

Structures represent the parts of a system. they represent the

main entities, their entries and the relationships between these

entities [17].

Any data model will be represented by a graph or schema.

Each model has its own elements which contribute to build the

model.

Structures may be the same in all data models but it will take

different names.

Not all structures are common in all models. There are some

structures allowed and some of them disallowed in each model.

The main factor related to structure is structure complexity.

Lacking of complexity may be disadvantage because relationships

not represented completely [13]. For example in Relational Model

34

the complexity is less than in Network Model, this means that less

details in relational Model.

For example Network Model has a high structural complexity;

this allows users to view a lot of relationships of a schema.

3.5 Constraints:

Constraints are the logical restrictions on data, its useful when

it's generic, and not useful for a particular instance of objects.

The types of constraints used in data models:

1- Inherent Constraints: it specifies that all relationships in

the hierarchal database are structured as trees [4]. for example

the resistance current increases the temperature, the

temperature determines the cooler speed, see Fig 3-1.

2- Explicit constraints: it provides a flexible mechanism

for augmenting the structure specification of database [9].

For example user can define temperature must be less than

26°.

35

Fig 3-1: Inherent constraints

Constraint complexity is also very important. Constraint

complexity can guide the users in interpreting the semantics of the

database. For example the lack of constraints complexity in

Relational Model allows meaningless relationships (joins) to be

formed.

Other example: inherent constraints in Entity Relationship Model

limit the data modeling capability and free unnatural organization of

the data.

Explicit constraints appear desirable; they provide more

flexibility in constraint specification than inherent constraints.

3.6 Operations:

Operations means processes applied by the user to get a specified

data from the database, operations divided into two parts,

Navigation operations and Specification Operations.

36

Data models differs how it serves scientific operations. Some

models provide ordering to its data, others don't. Selection data

items will depend on the data model we use.

Navigation Operations: occurred when data language selects one

object at a time by following a logical path through the database

structure. Navigation Operation uses selection thru currency. For

example, ask "get the next item in data" without specifying any

property for this item.

Thru Currency: it’s a logical position in DB used as indicator

to perform some actions.

The basic ways of setting currency in the database

1- Establish position in the database independent of the

relationship between records.

2- Permit navigation among records, via connections,

according to the links.

Specification Operations: selection of an item according to a

specific property provided by the user [17]. For example "give me

the temperature of the resistor where current = 0.2 mA", other

example "give me the resistor where it's resistance more than 50KΩ.

37

Specification operation outputs all items - agreed with

specified conditions- at the same time.

Chapter 4

Hierarchal Modeling for Scientific Applications

4.1 Introduction

At the moment we say hierarchal, we start thinking about past

old and useless design. But when we say that IBM still depends

38

hierarchal in its information management applications we start

rethinking and reviewing ourselves again.

Actually whether you want to build your own forum, publish

the messages from a mailing list on your Website, there will be a

moment that you'll want to store hierarchical data in a database.

And, unless you're using a XML like database, tables aren't

hierarchical; they're just a flat list. You'll have to find a way to

translate the hierarchy in a flat file [1].

Storing trees is a common problem, with multiple solutions.

There are two major approaches: the adjacency list model, and the

modified preorder tree traversal algorithm.

This chapter will work on the second method which is “tree

traversal algorithm”, because it is much faster and retrieving data in

this method achieved with only one query. Finally almost everything

can be done with this technique that could be done with the

adjacency list method.

In this article, this method of saving hierarchical data will be

explored. The tree for a TV schematic will be used as an example.

39

http://www.sitepoint.com/%22/glossary.php?q=X#term_3%5C%5C

Fig 4-1: TV schematic

 This schematic organizes its components by elements, by

functional units and by organic components. The tree looks like this

in figure 4-1.

This article contains a number of code examples that show

how to save and retrieve data. This example is written in PHP. it can

be probably easily to translate them to another language of choice.

40

TV

Elements Object

Resis Diode Cap Coils

Trans Cryst Fuses

Functional
Unit

Power
Supply

Stand
Unit

LV
Unit

Regul
Unit

ON-OFF
Unit

Start
Unit

Proc
Unit

Audio
Unit

Deflection
Unit

Ver
Unit

Hor
Unit

AC Power

http://www.sitepoint.com/%22/glossary.php?q=P#term_1%5C%5C

Fig 4-2 TV tree

Finally, Any scientific database model must respect two

viewpoints which are:

1- Technicians: who will use this model in

maintenance process. So they will concentrate on errors

happen in the system and their reasons.

2- Developers: who will browse and explore this

model to develop the application.

So the errors happen in any scientific application must be

taken in response and ease the reaching for its main reason or

reasons. So tree will be expanded to receive errors.

4.2 Modified Preorder Tree Traversal

Before starting scientific modeling, the expanded tree which

assimilates problems and errors of our system will be shown.

41

The problems may happen in the TV system will be

summarized and each problem will be given a code number:

Table 4-1 TV problems and reasons

TV Error Code
Reason

(Probabilities)
No Raster and No high Voltage. 001 a- Fuse
No Raster, high voltage cuts out, Relay clicks. 002 a- Start up.

b- Regulator.

c- Horizontal IC.
No Raster, we have high voltage, relay clicks. 003 a- ABL circuit

b- Blanking circuit

c- Picture tube

d- Fuse
No Raster, no high voltage, relay clicks. 004 a- Horizontal IC.
No Raster, low voltage, relay clicks. 005 a- Regulator.
Full Raster, have picture, no sound, no Hum. 006 a- Regulator.
Full Raster, have picture, no sound, have hum. 007 a- Audio Unit.
Full Raster, have picture, sound cuts out erratic. 008 a- Circuit Board.
Bent vertical line picture. 009 a- Yoke.

b- Vertical IC.
Vertical line. 010 a- Resistors.

b- Diodes.
Vertical problem, pixels cut off . 011 a- Resistors.

b- Capacitors.

Vertical Raster, no picture, no sound. 012 a- Tuner.
Vertical Raster, no picture, has sound. 013 a- Tuner.
Vertical Snow, no picture, no sound. 014 a- Tuner.

b- Antenna.
Vertical Snow, no picture, no sound. 015 a- Tuner.

42

b- Antenna.
Vertical present, no color. 016 a- Chrome IC.

We will try to put some of those errors at the end nodes in our

tree, so each error connected with its related causing unit, so tree

will be as follow:

43

44

We'll start by laying out our tree in a horizontal way. Start at

the root node (‘TV'), and write a 1 to its left. Follow the tree to

‘Elements Object' and write a 2 next to it. In this way, you walk

(traverse) along the edges of the tree while writing a number on the

left and right side of each node. The last number is written at the

right side of the ‘TV' node. In this image, you can see the whole

numbered tree. See fig 4-3.

Before continue, let's see how these values look in our table:

Table 4-2 Table expression for TV tree model

parent title Lft rgt
TV 1 66

TV Elements 2 25
Elements Fuses 3 8

Fuses 003 4 5
Fuses 001 6 7

Elements Cap 9 12
Cap 011 10 11

Elements Resis 13 18
Resis 010 14 15
Resis 011 16 17

Elements Trans 19 20
Elements Diode 21 24

Diode 010 22 23
TV AC 26 27
TV Functional 28 65

Functional Regulation 29 36
Regulation 002 30 31
Regulation 005 32 33
Regulation 006 34 35
Functional Deflection 37 48
Deflection Horizontal 38 43
Horizontal 002 39 40
Horizontal 004 41 42
Deflection Vertical 44 47
Vertical 009 45 46

Functional Audio 49 50
Functional ON-OFF 51 58
ON-OFF Start 52 55

45

Start 002 53 54
ON-OFF Proc 56 57

Functional Power_Supply 59 64
Power_Supply LV 60 61
Power_Supply Standby 62 63

Note that the words ‘left' and ‘right' have a special meaning in

SQL. Therefore, we'll have to use ‘lft' and ‘rgt' to identify the

columns. Also note that the ‘parent' column not really be need

anymore. The lft and rgt values used to store the tree structure.

46

47

4.3 System Error Detection

In the traditional methods like catalogues or schematics it

takes a lot of time to relate between such an error and the circuit or

unit responsible of this error.

With this new algorithm, we'll have to find a new way to get

the path to a specific problem such as TV error easily and quickly.

To get this path, we'll need a list of all ancestors of that error.

With our new table structure, that really isn't much work.

When you look at, for example, ‘error 002' node which means "No

Raster, high voltage cuts out, Relay clicks”, the question is which is

the circuits may cause this error? The following quick and easy steps

answer question:

1. know the left and right values of our error by the

following statement:

Output for this expression

Table 4-3 output table in error finding

parent title Lft rgt
Regulation 002 30 31
Horizontal 002 39 40

Start 002 53 54

48

you'll see that the left values of all ancestors are less than 30

or 39 or 53 while all right values are greater than 31 or 40 or 54.

2. To get all ancestors, this queries can do that:

SELECT FROM TREE LFT, RGT

WHERE TITLE = “002”

SELECT TITLE FROM TREE WHERE LFT < 30 AND RGT > 31

ORDER BY LFT ASC;

SELECT TITLE FROM TREE WHERE LFT <39 AND RGT> 40

ORDER BY LFT ASC;

SELECT TITLE FROM TREE WHERE LFT <53 AND RGT> 54

ORDER BY LFT ASC;

Note that, just like in our previous query, An ORDER BY

clause can be used to sort the nodes. This query will return:

Output:

Table 4-4 probabilities of error 002 reasons

TV TV TV

Functional Unit Functional Unit Functional Unit

Regulation Circuit Deflection Unit ON-OFF Unit

002 Horizontal Unit StartUp Unit
002 002

We understand that error “002” may caused by the following

circuits:

1- Regulation circuit which is a functional unit.

49

2- Horizontal circuit in the deflection unit.

3- Startup circuit in ON-OFF unit.

4.4 Adding New Scientific Unit to the System

Electrical designer discovered that a new problem may occur

on Scientific system, he attends to define this new error to the

system, can he do that? How a node can be added to the tree?

Or if designer wants to improve the system by adding a new

unit, he needs to write a new manual and draw a new circuit

diagram…etc. but up to now by using database design he needs only

2 – 3 SQL statements to improve and add the improvement to his

electronic manual.

There are two approaches: you can keep the parent column in

your table and just rerun the rebuild_tree() function -- a simple but

not that elegant function; or you can update the left and right values

of all nodes at the right side of the new node.

The first option is simple. You use the adjacency list method

for updating, and the modified preorder tree traversal algorithm for

retrieval. If you want to add a new node, you just add it to the table

50

and set the parent column. Then, you simply rerun the rebuild_tree()

function. This is easy, but not very efficient with large trees.

The second way to add, and delete nodes is to update the left

and right values of all nodes to the right of the new node. Let's have

a look at an example. A new TV error which is “Audio cuts out”

will be added, as the last node and a child of ‘Audio unit'. First, we'll

have to make some space. The right value of ‘Audio Unit' should be

changed from 50 to 52, the 51-52 ‘ON-OFF unit' node should be

changed to 53-54 etc. Updating the ‘Audio Unit' node means that

we'll have to add 2 to all left and right values greater than 49.

We'll use the query:

UPDATE TREE SET RGT=RGT+2 WHERE RGT>49;

UPDATE TREE SET LFT=LFT+2 WHERE LFT>49;

Now a new Error ‘Audio Cuts out' can be added to fill the

new space. This node has left 50 and right 51. A title such as “040”

can be given to the error.

INSERT INTO TREE SET LFT=50, RGT=51, TITLE=”040”;

Our new database will be as:

51

Fig 4-5 Adding new error “Audio Cuts Out” with code 040

4.5 How Many Descendants

Can the designer know how many circuit or unit affected by a

specific unit? Can he know how many errors happen if such unit or

element damaged? This what we’ll discuss here.

52

If you give me the left and right values of a node, it is easily

to know how many descendants it has by using a little math.

As each descendant increments the right value of the node

with 2, the number of descendants can be calculated with:

DESCENDANTS = (RIGHT – LEFT - 1) / 2

With this simple formula, it is easily to know that “Deflection

Unit” which has left value 37 and right value 48 has effecting 5

actions in our TV which are “Horizontal, Vertical, Error 002, Error

004, Error 009”. And that the “Power Supply” unit which has left

value 59 and right value 64 affect two other circuits.

(a) (b)

Fig 4-6 (a) Deflection unit affect 5 units. (b)Power Supply affecting 2 circuits

4.6 Retrieve the Block Diagram Of a Scientific Application

Does hierarchal modeling serves technicians who wants to

view the whole block diagram? Suppose that the developer

53

engineering wants to make improvements on the application, he

must first view the application schematic, can he do that easily and

quickly?

If you want to display the tree using a table with left and right

values, you'll first have to identify the nodes that you want to

retrieve. For example, if you want the ‘ON- Off' subtree, you'll have

to select only the nodes with a left value between 51 and 58. In SQL,

that would be:

SELECT * FROM tree WHERE lft BETWEEN 51 AND 58;

That returns:

Table 4-5 output of SQL commands

Functional ON-OFF 51 58
ON-OFF Start 52 55

Start 002 53 54
ON-OFF Proc 56 57

Well, there it is: a whole tree in one query. To display this tree

like we did our recursive function, we'll have to add an ORDER BY

clause to this query. If you add and delete rows from your table,

your table probably won't be in the right order. We should therefore

order the rows by their left value.

SELECT * FROM tree WHERE lft BETWEEN 51 AND 58

ORDER BY lft ASC;

The only problem left is the indentation.

54

To show the tree structure, children should be indented

slightly more than their parent. It can be done by keeping a stack of

right values. Each time you start with the children of a node, you

add the right value of that node to the stack. You know that all

children of that node have a right value that is less than the right

value of the parent, so by comparing the right value of the current

node with the last right node in the stack, you can see if you're still

displaying the children of that parent. When you're finished

displaying a node, you remove its right value from the stack. If you

count the elements in the stack, you'll get the level of the current

node.

<?PHP

FUNCTION DISPLAY_TREE($ROOT) {

 // RETRIEVE THE LEFT AND RIGHT VALUE OF THE

$ROOT NODE

 $RESULT = MYSQL_QUERY('SELECT LFT, RGT FROM

TREE '.

 'WHERE TITLE="'.$ROOT.'";');

 $ROW = MYSQL_FETCH_ARRAY($RESULT);

55

 // START WITH AN EMPTY $RIGHT STACK

 $RIGHT = ARRAY();

 // NOW, RETRIEVE ALL DESCENDANTS OF THE $ROOT

NODE

 $RESULT = MYSQL_QUERY('SELECT TITLE, LFT, RGT

FROM TREE '.

 'WHERE LFT BETWEEN '.$ROW['LFT'].' AND '.

 $ROW['RGT'].' ORDER BY LFT ASC;');

 // DISPLAY EACH ROW

 WHILE ($ROW = MYSQL_FETCH_ARRAY($RESULT)) {

 // ONLY CHECK STACK IF THERE IS ONE

 IF (COUNT($RIGHT)>0) {

 // CHECK IF WE SHOULD REMOVE A NODE FROM

THE STACK

 WHILE ($RIGHT[COUNT($RIGHT)-1]<$ROW['RGT']) {

 ARRAY_POP($RIGHT);

 }

 }

56

 // DISPLAY INDENTED NODE TITLE

 ECHO STR_REPEAT(' ',COUNT($RIGHT)).

$ROW['TITLE']."\N";

 // ADD THIS NODE TO THE STACK

 $RIGHT[] = $ROW['RGT'];

 }

}

?>

If you run this code, you'll get exactly the same tree as with

the recursive function discussed above. Our new function will

probably be faster: it isn't recursive and it only uses two queries.

4.7 Disadvantages Of Using Hierarchal Design In Scientific

modeling.

Actually building hierarchal modeling for scientific systems

will be hard in large systems, there will be a lot of nodes for the

system tree, and a lot of values. But at the moment it has been built,

maintenance and system tracing will be very easy.

57

Another disadvantage is that hierarchal modeling for scientific

applications may be disable to relate parallel units with each other.

For instance, it is difficult to relate Audio unit with deflection unit,

those two units exists in different nodes.

Fig 4-7 Relation between parallel units disallowed

Also in heirarchal modelling you cant relatem a specific error

such as “002” error directly to more than one unit. This may lose

more time in designing procedure.

4.8 Conclusion

Using hierarchal design saves a lot of time in error detection,

scientific system improvements, viewing system structure. So it

serves technicians in maintenance and engineers in design an

develop.

58

Hierarchal design can be a good replacement for a hard copy

of manuals, catalogues and circuit diagrams, which used to help in

scientific systems analysis.

Some disadvantages in heirarchal modeling but it doest

prhibite usin ehis kind of modeling, because it is not in basics of this

modeling method. It is related only on time consumption.

Chapter 5

Using Relational Model in Scientific Applications

59

5.1 Introduction

In the Relational model, data is structured into simple tables.

Relational model is the most common and distributed model.

Relational model is easy to design and there are a lot of

programming languages manipulating it [4].

A relational database is more than just data organized into related

tables. The relational database model is based firmly in the

mathematical theory of relational algebra and calculus. The original

concept for the model was proposed by Dr. E.F. Codd in a 1970

paper entitled ‘A Relational Model of Data for Large Shared Data

Banks.’. Later Dr. Codd clarified his model by defining twelve rules

(Codd’s Rules) that a database management system (DBMS) must

meet inn order to be considered a relational database. In practice,

many database products are considered 'relational' even if they do

not strictly adhere to all 12 rules. Dr. Codd’s 12 rules is presented In

appendix A.

Relational model considered a bottom–up approach because the

steps of its creation are:

1- Select the attributes.

2- Combine these attributes into tables.

60

Relational model starts at elementary level of attribute [13].

A scientific example introduced here, this example will be

manipulated through all models.

Scientific Example: suppose we have a robotic system. The system

consists of power supply, infrared emitters, infrared detectors, and

motors. The company which designed this system will record all

data about the motors movements for this system [10].

There are three power cables exit from power supply; each of

them provides different voltage and current. The three cables

supplies electricity to all other devices in the system. The relations

in this model as follow:

1. The motor speed depends on:

• Power Cables which provide it with power.

• Signals come from Infrared detector.

2. The infrared Emitter depends on Power Cable only.

3. The infrared Detector depends on Power cable and the

Emitter.

61

So there are functional dependencies in this model. One motor

can affect other motors speed. That what's called Recursive

relationship.

Figure 5-1 shows the diagram of the circuit

Fig 5-1: Diagram of speed control system in a robotic system

62

Table 5-1: Power Supply Entries

Power

Cable
Voltage Current Location

of Motors

10 5 1.2 1 2

20 10 1.5 4 1

30 15 2 7 1

Table 5-2: Infrared Emitter Entries

Infrared Emitter

Emitter Code Location

 15 2

16 3

17 5

18 6

Table 5-3: Infrared Detector Entries

Detector Code Location
11 2
12 3
13 5
14 6

Table 5-4: Motors Entries

Motor Code Location
21 11
22 8
23 10
24 9

63

5.2 Structures of Relational Model

The two basic elements in Relational model are Relational

Schema which represents group of tables in the model, and Relation

Scheme which represents one table.

Relationships between the tables can be represented by two

ways:

1- Key propagation: adding attribute from one table to

another. This done in 1:1 and 1:M relationships.

Example:

• Relationship between Power supply and infrared

devices

a- One power supply cable may provide many

infrared emitters and detectors.

b- One Infrared device provided by one power

supply cable only.

This relationship called one to many relationship.

• Relationship between infrared emitter and detector

a- One emitter relates to (emits to) one detector.

64

b- One detector relates to (receives from) one

emitter.

This relationship called one to one relationship.

• Relationship between Power supply and Motors

a- One power cable may provide many motors.

b- One motor device provided by one power cable

only.

This relationship called one to many relationship.

Table 5-5 shows the usage of key prorogation to represent the

previous relationships. We added Power cable and Detector code to

Infrared Emitter table to represent 1:M and 1:1 relationships

Table 5-5: Key Prorogation by adding Power cable and Detector code to

Infrared Emitter table to represent 1:M and 1:1 relationships

Emitter Code Power Cable Detector Code Location

15 20 11 2

16 30 13 3

17 10 12 5

18 10 14 6

Table 5-6 shows the representation of 1:M relationship

between power cables and motors.

Table 5-6: one to many representation by Key progagation

Motor

65

Motor Code Power Cable Location
21 20 11
22 30 8
23 10 10
24 10 9

2- Separate relation scheme: new table consist of related

relationship. This done in M:M relationships.

Example: Relationship between infrared Devices and motors

a- One infrared detector may control many motors.

b- One motor can be controlled by many infrared

detectors.

This relationship called many to many relationship

Table 5-7 shows the representation of M:M relationship

between Detectors and Motors by a new separated table.

Table 5-7: The representation of M:M relationship between Detectors

and Motors.

Motor Code Detector Code

21 11

22 11
23 12
24 13
21 12
24 12
22 14

66

Figure 5-2 shows the Relational schema for the scientific example

Figure 5-2: Relational Schema for Scientific Application

67

Power Supply

Power CableVoltageCurrentLocation# of

Motors1051.21220101.5413015271

Infrared Emitter

Emitter CodePower CableDetector

CodeLocation1520112163013317101251810146

1

Motor

Motor CodePower

CableLocation2120112230823101024109

2

Figure 5-2: Relational Schema for Scientific Application (cont'd)

68

69

Infrared Detector

Detector CodePower

CableLocation11202123031310514306

1

Detector Motor

Motor CodeDetector

Code2111221123122413211224122214

2

Suppose an error occurred and motor 21 stopped, by using the

model it's easy to search for the power cable which supplies this

motor, and the detectors which control this motor.

The set of the tables is called Relational Schema, one of the

tables (Power Supply, or Infrared Detector, or…..) is called relation

scheme.

5.3 Constraints in Relational Model

 The constraints in Relational Model are:

1. No duplication rows are permitted [9].

This obtained by what's called Primary Key, which is any subset

of attributes having a value uniquely identify the row in a relation.

For example primary key in Power Supply table is Power Cable, in

Infrared Detector it is Detector Code.

2. The ordering of rows and columns is not significant in

Relational Model.

3. No inherit constraints; This presents difficulties in

terms of exploiting meaningful relationships between

relations.

70

For example if user deleted Cable 10 from Power Supply table,

other tables will not affected. It seems meaningless that Motor 23

and 24 supplied by Cable 10, so it is disadvantage of Relational

model.

4. Provides a facility for specifying explicit constraints on

the relations, these explicit constraints are:

a- Scope: limiting the domain of the value. For example

specify that the attribute contents are integer, real,

character.

b- Assertion: Predicates that specific condition must be

satisfied by the user to the database. It can describe the

permissible states for the data.

For example in power supply table, the voltage must be

greater than 5v and less than 50v, 50>Voltage>5,

Another example in power supply table, the summation of

#of motors must equal the number of motors in Motor table which

equals four. Figure 5-3 explains this example:

71

Example: Assertion by SQL Language to limit voltage in Power

Supply table.

ASSERT C1 ON POWER SUPPLY:

Voltage >5 AND

Voltage<50

Fig 5-3: Assertion constraint.

5.4 Operations on Relational Model

72

Power Supply

Power CableVoltageCurrentLocation# of

Motors

M

1051.212

1

20101.541

2

3015271

3

∑ = 4 motors

Motor

Motor CodePower

CableLocation

C

212011

2

22308

2

231010

2

24109

22

∑ = 4 motors

Two basic operations which are Navigation operations and

Specification operations applied to this model will be discussed

separately.

5.4.1 Navigation Operations on Relational Model

Navigation means browsing data one by one without a

specific condition. In order to navigate data in the Relational

Database, two basic concepts needed:

a) Currency on the table.

b) An order of retrieval Data.

Example: Suppose an employee wants to navigate all motors in

Motor table and there locations. The navigation process achieved by

the following SQL commands.

1. CREATE SCAN Motors Code ON Motor

2. SET SCAN Motors Code

3. GET NEXT Motor Code

4. Output SELECT FROM Motor Code: Motor Code,

Location

The steps of this program are:

1. line1 states that:

73

a. The name of this scan (navigation) is Motor Code. The

scanning name assigned to be referred at any position in the

program.

b. Determine the table which will be browsed (Motor table).

2. Line2 indicates to start navigation; this will reset the

currency indicator to the top of the table.

3. Line3 controlled the position of the currency indicator to

navigate the following Motor.

Actually repeating of this process is needed to scan all Motors

and this achieved by simple for loop.

4. Line4 asked to retrieve the Motor Codes founded through

the scanning.

The output of this operation is concatenated in the same order

indicated by the list of attribute names in the table. Table 5-8 shows

the output (when using for loop for the scanning process):

Table 5-8: The output of navigation operation

Motor Code Location

21 11

22 8

23 10

24 9

74

We achieved currency in line 1,2 and 3. This happened by

determining the table (line1) to be navigated, then the position of the

currency indicator in this table (line2) to start navigation from, after

that controlling the position of currency indicator to move down to

the following row in the table (line3).

Ordering of the output retrieved from the program depends on

the ordering of rows in the original table (line4).

5.4.2 Specification Operations on Relational Model

The main feature of languages serves Relational model is its

ability to define a new relation based on existing relations, using

relational algebra or similar types of operations.

For example someone wants to know which Power Cables

from the Power Supply table where power (Watts) provided

(Current X Voltage) is over 15 W, then the user will write the

following SQL lines:

• SELECT Power Cable FROM Power Supply

75

• WHERE Current * Voltage ≥ 15

This selection method is specified to a condition, so it can be said

that it's a specification operation. The output of these commands will

appear as a table, this table considered as a picture only, so it is

called snapshot relation. Snapshot will stay only during the time of

running the program; the output relation appears as follow:

Table 5-9: output of a specification operation

Power Cable

20

30

Example: The engineer in the company asking for the Motor Code

which receives Current over 1.8A, the commands in SQL:

• SELECT Motor Code FROM Motors

• WHER Power Cable = (SELECT Power Cable

FROM Power Supply WHERE Current > 1.8A)

76

Figure 5-5 explains the selection statements in the example

Fig 5-5: Compound selection

77

Power Supply

Power CableVoltageCurrentLocation# of

Motors1051.21220101.5413015271

Motor

Motor CodePower

CableLocation21201122308231010241092

The output table will be:

Motor Code

22

Fig 5-6: output of the example

Quires can be manipulated by short statements, it is better

than catching millimeter or looking to a map for a long time to

determine which power circuit provides this device, or which

devices related to this cable.

5.5 Conclusion

Relational Data Model depends on creating tables only, no

relationships explained between these tables. Relational Model is

easy and works well in relatively simple scientific situations [13].

Relational Model achieved a great goal; they have brought

together the practitioners who implement the scientific systems and

the researchers who conceptualize about them [17].

The most obvious concepts missing from Relational Data

Models deal with the specification and representations of constraints

on and among relations [5].

78

Chapter 6

Using Entity Relationship Model in Scientific

Applications

6.1 Introduction

Entity Relationship model (ER) is a type of data model based

on tables and graphs, it facilitates database design by allowing

Enterprise schema [17].

Enterprise Schema represents the entire enterprise view of

data and the documentation of the logical properties of these data. It

is independent of storage or efficiency consideration.

ER is considered a conceptual model via top-down approach

which starts from identifying entities and relationship types, and

then uses these to construct a framework into which the attribute

may be sorted [13]. The steps of creation Scientific ER model are:

1- Select the main entities in the scientific

application.

2- Determine the relationships between these

entities.

3- Assigning the entities with its related attributes.

79

6.2 Structures of Entity Relationship Model

The basic elements of the ER model is

1- Entity Set: which represents the tables, it is represented

by rectangular. Figure 6-1 shows entity sets

Fig 6-1: Three entity sets

2- Relationship Set: which represents the relationship

between entities, it is represented by diamond.

Figure 6-2: Three Relationship sets

3- Label on the connecting arc (1, M): it represents the

maximum cardinality permitted for an entity set in a

relationship set. For example label 1 between Power Supply

and Power Motor sets means that at maximum one power

cable can provide the same motor. And also label M between

80

Motor and Detector Motors means that many motors can be

affected by the same detector.

Fig 6-3: labels on Relationships, one to one relationship

ER model depicted by a diagrammatic technique called Entity

Relationship Diagram (ERD), figure 6-4 shows the ERD for our

scientific example in chapter2:

81

Power Supply

Power
Emitter

s

Infrared Emitter

Power
Detecto

rs

Infrared Detector

Detect
or

Motor
s

Motor

Powe
r

Moto
rs

Emitte
r

Detect
or

1

M

1 1

1

M

1

M

M

MAffect

1

Infrared
Detector

Motor

Contr
ol

Speed

Stop
Motor

1

M M

M

Fig 6-4: Entity Relationship Diagram (ERD)

The main Properties of ER Data Model structures:

1- Links can represent 1:1, 1:M, M:M relationships

between entities.

2- Recursive links are allowed. For example the

Motor speed affects the speed of other many motors.

Fig 6-5: Recursive Link

3- It is possible to have more than one relationship

set between the same two entity sets; figure 6-6 shows

an example.

82

Fig 6-6: Two relationships between the same entities

This property gives more details about Relationships. In the

figure 6-6 the first relationship 1:M means that a motor speed

controlled by one detector only. The second relationship M:M

means that a motor stopped by many detectors.

4- A relationship set may be among n entity sets;

figure 6-7 shows an example.

Fig 6-7: Three entity sets (Ternary Relationship)

The figures explains three entities related by the same

relationship which is controlling the motor work. The relation in

figure 6-7 indicates that:

Infrared Detector Power Supply

Motor

Motors
Control

led

1

M

M

83

1. One detector supplied by one power cable affects many

motors.

2. One motor supplied by one power cable controlled by many

detectors.

3. One motor affected by many detectors supplied by one power

cable.

Creation of an ER model in a programming language means

the following must be created:

1. Creation of main entity sets and its attributes. In the

example it was:

a. Power Supply: (Power Cable, Voltage, Current,

Location).

b. Infrared Detector: (Detector Code, Location).

c. Infrared Emitter: (Emitter Code, Location).

d. Motor: (Motor Code, Location).

2. Creation of the Relationship sets and assigning

attributes for each set. In the previous scientific example the

relationship sets and their attributes will be as follow:

a- Power Detectors: contains Power Cable, Detector

Code.

84

b- Power Emitter: contains Power Cable, Emitter

Code.

c- Emitter Detector: contains Emitter Code,

Detector Code.

d- Power Motors: contains Power Cable, Motor

Code.

In scientific models no way to separate between the elements

forming the model. One of the scientific model properties is the

integrity. It is meaningless that each part at the same model works

alone without feedback, this property makes the decision of ER

model is the favorite [15].

6.3 Constraints in Entity Relationship Model

Constraints offered by ER model are explicit constraints. The

user put them in the definition of the database:

1. Value set: it means the domain and the range for each

attribute, for example number, character, real, date from 1 to

1000.

85

2. Existence dependency: It means that the existence of the

member entity in a relationship set depends on the existence

of the owner entity for the same relationship set.

It is very important restriction for scientific applications

because there are many functional dependencies in scientific

applications.

Example: The motor depends on the power cable. When the power

cable removed the motor removed automatically from the database.

This concept served by the languages compatible with ER model

[16].

Figure 6-8 shows this type of constraints, it is represented by

labeled box, double-rectangle, and label E in the relational set.

Power Supply

E
Pow
er
Mot
or

1

M

Motor

86

Figure 6-8: Existence Constraint

3. ID Dependency: it occurs when an entity cannot be identified

alone, it can be identified only by its dependency with other

entities.

Example: Infrared Emitter identifies Infrared Detector. User can't

identify any infrared detector without identifying emitter; figure 6-9

shows this type of constraints.

ID Dependency is an Existence constraint but the existence

constraint is not an ID Dependency.

As example the ID Dependency in the scientific example is

that when deleting Infrared Emitter then Infrared Detector which

relates to it removed automatically.

ID dependency represented by labeled box, doubled rectangle

and ID label in the relationship set, Fig 6-8 shows this type.

87

Fig 6-9: ID Dependency Constraint

We conclude that the constraints in the entity relationship

support the integrity property of any scientific model. It is better to

use ER model in complex models because it prohibits any

meaningless operations [8].

6.4 Operations on ER Model

ER model offers a specification operations through

specificified data languages such as CABLE (Chain Based

Language). Languages based on the fact of links and paths exist on

Infrared
Emitter

ID
Emitter
Detecto

r

1

M

Infrared
Detector

88

ER model. The complexity of a retrieval specification is greatly

reduced.

Example1: some one wants to browse all motor Codes exist in the

database, so by CABLE language:

• Select Motor.Motor Code.

Example2: Power cable 30 will be separated for some time, so the

engineer must know which motors affected? as a matter of quick

answer the electrical engineer will refer to motors table and say that

cable 30 provides motor 22 then motor 22 only will be affected; but

in fact power cable 22 affects infrared detector 12 and 14 and these

detectors affect the motors 21, 22 and 23.

In this scientific example it is clear that there are two paths

between power supply and motor, the first path is direct connection,

and the second path is through Infrared Detector.

Figure 6-10 explains the two paths between power supply and

motor. Network language follows power cable 30 in these two paths.

It is amazing, easy and quick to know this information by the

following few CABLE statements

1) OUTPUT Motor.Motor Code

2) Select Power.Power Cable = '30'

89

3) Select Power.Power Cable = '30' /Infrared Detector

Line 1 states: show and display all motor codes retrieved from

the following paths.

Line 2 states: through the direct path between Power Supply and

motor tables, select all rows that have power code=30. The output of

this command line is (this output will not appear to the user):

Motor Code Power Cable
22 30

Fig 6-11: Output of the line 2 command, selection in the direct path

90

Fig 6-10: Two paths between Power Supply and Motor

91

Infrared Detector

Detector

CodeLocation112123135146

Motor

Motor

CodeLocation21112282310249

Power Supply

Power CableVoltageCurrentLocation# of

Motors1051.21220101.5413015271

Power Detectors

Detector CodePower

CableC 11201 12301 13101 14301

Detector Motors

Motor CodeDetector

Code21112211231224132112241222142

Motor

Motor CodePower

CableC 21202 22302 23102 241022

Line 3 states: pass through Infrared Detector table path and

select all rows in this path having power cable = 30, the output of

this command line is (this output will not appear to the user):

Detector

Code

Power

Cable

Motor

Code

Detector

Code
12 30 21 12
14 30 22 14

23 12
Fig 6-12: output of the line 3 command, selection through indirect path

The Motor Codes appear in the two selection statements are

Motor Code 21, 22 and 23, these codes are the output of this

program.

6.5 Conclusion:

Entity Relationship (ER) model satisfies the requirements of

scientific database design method; it makes integration between the

entities and the relationships between entities. ER model is general

enough and semantically rich enough to express the structures and

constraints of the scientific applications.

ER model can be designed for computer implementation or

for human understanding to a scientific model.

92

 ER constraints make a powerful and flexible scientific

representation system, it restricts any error may occur by the user.

Operations applied to ER model are specification operations.

It is easy and efficient to be applied on any scientific system.

Specification operations retrieves data wanted in high accuracy by

simple statements.

ER Model uses the Mathematical Relation Construct to

Express the Relationships between Entities. The relational model

and the ER model both use the mathematical structure called

Cartesian product. In some way, both models look the same – both

use the mathematical structure that utilizes the Cartesian product of

something. A relationship in the ER model is defined as an ordered

tuple of “entities.” In the relational model, a Cartesian product of

data “domains” is a “relation,” while in the ER model a Cartesian

product of “entities” is a “relationships.” In other words, in the

relational model the mathematical relation construct is used to

express the “structure of data values,” while in the ER model the

same construct is used to express the “structure of entities.”

ER Model Contains More Semantic Information than the

Relational Model. By the original definition of relation by Codd, any

93

table is a relation. There is very little in the semantics of what a

relation is or should be. The ER model adds the semantics of data to

a data structure. Several years later, Codd developed a data model

called RM/T, which incorporated some of the concepts of the ER

model [7].

Chapter 7

Using Network Data Model in Scientific Applications

94

7.1 Introduction

Network data models based on tables and graphs, it is not far

from ER model, some different will appear between ER model and

network model.

Network model graph seems as tree. It seems to be complex,

and it disallows some relationships which is important for scientific

applications.

7.2 Structures of Network Model

The basic items forms network models are the record type

which represents the table and the set type which represents the

relationship between entities.

The diagram represents network model called Data Structure

Diagram, it contains record types and set types.

In network model data structure diagram hasn't tables, this

differs from relational model where its representation must include

the tables.

Figure 7-1 shows a scientific network model represented by Data

structure diagram.

95

96

Fig 7-1: Data Structure Diagram for a Network Scientific Model

97

Power Supply

Infrared Emitter Infrared Detector

Motors

Motors
Detectors

Supplied Emitters Supplied Detectors

Supplied Motors
Motors Affected

Detectors affect

The record types appear in this model are Power Supply,

Infrared Detector, Infrared Emitter and Motors.

The Set types in this model are supplied detectors, Supplied

Emitters, Supplied Motors, motors affected and Detector affects.

Properties of the network model structures are:

1. Only functional links (1:1, 1:M) between entities

allowed in network model. M:M Relations cannot exist

between two related records directly, this will be discussed in

the following section.

2. For any set type their must be OWNER and

MEMBER. Owner always at the tail of the arc, while member

at the head of the arc.

3. Recursive Link disallowed in network model, it

impossible here to say that motor affect other motors, it is one

of the disadvantages of this model. Figure 7-2 shows

recursive link.

98

Fig 7-2: Recursive Link disallowed in network model

When defining the structures of a scientific Network model, it is

recommended to define first Record types and attributes included in

each type. Then defining the set types and specifying the OWNER

and MEMBER for each set as the following commands (uses ANSI

Data Definition Language):

RECORD NAME IS Power Supply

Power Cable

Voltage

Current

Location

RECORD NAME IS Infrared Detector

Detector Code

Location

RECORD NAME IS Infrared Emitter

Emitter Code

Motor

Affect

99

Location

RECORD NAME IS Motor

Motor Code

Location

SET NAME IS Supplied Motors

OWNER IS Power Supply

MEMBER IS Motor

SET NAME IS Supplied Detectors

OWNER IS Power Supply

MEMBER IS Infrared Detector

SET NAME IS Supplied Emitters

OWNER IS Power Supply

MEMBER IS Infrared Emitters

Actually the nature of entities (OWNER or MEMBER) is

very important for scientific applications. This property gives

limitations on the operations applied to the database.

Definition of OWNER or MEMBER as a structure increases

the integration in the scientific model.

100

For example it is disallowed to delete the OWNER while

there is a MEMBER related to it. User can't delete Power Cable 10

while Motor 23 and 24 still related to this cable.

In the Relational model, there was no OWNER or MEMBER,

so any changes to any table will not affect other tables.

In ER models also OWNER and MEMBER missed. Instead,

in ER model user determines the type of dependency if it is ID or

Existence dependency.

7.3 Constraints in Network Models

Constraints offered by this model are:

1. The first constraint is inherit constrain. It is a Built-In

constraint can be applied to any scientific database by the

user. It states that any member record can have at most one

owner record.

Example: a computer company attending to make a central

computer. This computer has multiprocessors, multi hard disks,

multi CD-ROMs and multi coolers. As a matter of fact, computer

coolers work always depending on power supply working. Coolers

don’t depend on CPU or hard disk. When using the last constrain

101

user can't make a relationship between motherboard and cooler.

Figure 7-3 explains this constraint.

Fig 7-3: Cooler is member for two owners (Power Supply, Hard disk), this

linking can be restricted by programmer.

Any user tries to relate (make a table) hard disks and coolers

will face restriction message from the program.

2. Many to Many relationships cannot be represented directly; it

can be represented by indirect way. Figure 7-4 explains this

property.

The disability of representing M:M relationship is

disadvantage.

In scientific applications there are a lot of many to many

relationships. But it is possible to represent M:M indirectly, this

make the model complex.

Power Supply

Hard Disk

Cooler

CD-ROM

102

Fig 7-4: (a) many to many representation disallowed. (b) Intension

representation for many to many relationship.

3. Record type must have one or more primary keys.

4. Explicit constraints on the domain and value of the attribute;

for example Voltage is greater than 4 volt.

5. Membership, it can be Time Independent or Time Dependent

membership.

a.Time Independent membership: it specifies the permanence of

the connection between owner and member, the types of this

property are:

1.Fixed set membership: a record has become a member of

a set; it cannot be disconnected or moved to another set.

Infrared
Detector

Motor

Infrared Detector

Motors

Motors
Detectors

(a) (b)

103

Example: user cannot move or disconnect Infrared Detector

11 which receives from Emitter 15.

2.Mandatory set membership: a record has become a

member of a set; it cannot be disconnected but it can be

moved to another set.

Example: user can move detector 13 (which controls motor

24) to control motor 22, but user cannot delete detector 13.

3.Optional set membership: a member can be moved or

disconnected.

Example: Motor 21 can be moved to another power cable;

also this motor can be disconnected.

b.Time Dependent set membership: it specifies the mechanism of

establishing a connection in a set. The types of this property are:

1.Automatic set membership: at the moment owner is

created immediately the member created automatically.

Example: at the moment user adds Emitter, new detector

code created automatically.

2.Manual set membership: a member is connected manually

by the user when he adds new owner record.

104

Example: when adding new power cable, user may add

new motor code manually, or may not add this motor

because the new power cable may for other devices.

7.4 Operations on Network Models

The two basic operations which are navigation operations and

specification operations will be discussed separately.

7.4.1 Navigation Operations

Two currencies must exist. The first currency indicates the

table which user wants to browse. The second currency indicates the

last table which had been scanned by the user.

Two types of navigation may be applied on Network Model:

a. Navigation Through Table: Here an example shows

how to browse voltages in power Supply table (the

statements written in COBOL DML: data manipulation

language):

• FIND Power Supply RECORD //place the currency

on power supply table

• OBTAIN NEXT Voltage // browse the Voltage

entries in Power Supply table

105

Power Supply

Infrared Emitter

Power CableVoltageCurrentLocation# of

Motors1051.21220101.541

Emitter CodeLocationE 1521 1631 1751 18611

Emitters Supplied
Emitter CodePower
CableC 15101 16201 173011

If the user stopped scanning, currency indicator stay on this table.

b. Navigation through Links: for example, suppose user

wants navigate all emitters supplied by power cables

exist in power supply table.

Figure 7-5 shows two related tables which are Power Supply

table and Infrared Emitter table. There is no Power Cable 30 in

Power Supply table. Then in "Emitter Supplied" link there is Emitter

17 supplied by Power Cable 30. So Emitter 17 doesn't appear in

output.

User writes these statements to navigate Emitters supplied by

power cables exist in power supply table.

• FIND Power Supply RECORD

• OBTAIN NEXT Emitter Code RECORD

106

Fig 7-5: Two tables with one link (Emitters Supplied)

The output of these statements are:

Emitter Code
15

16

Fig 7-6: output of the navigation operation in the example

Actually this happened only when the user assigned Optional

link between the two tables as mentioned in the previous section.

7.4.2 Specification Operations

Entries can be selected in one of the two ways:

1. According to Boolean expression (>, <, =, …) of criteria on

the attributes of table. For example we will select power

cables which provides voltage equal or greater than 10, the

following statements do that (by NUL language):

• S1 ← Power Cable

• WHERE Voltage ≥ 10

Figure 7-6 shows the selection operation S1:

107

Fig 7-6: Selection operation S1

2. According to its relationship with previously selection. The

previous example named the selection S1. User can build

upon this selection.

Example: The previous selection S1 outputs Power cables 20 and

30.

The engineer wants to know which motors provided by these cables.

• S1← For S2

• BY Supplied Motors

• Motors

Figure 7-7 explain this compound selection S2. At first, program

refer to S1 selection. Then, it makes another selection S2 which

depends on the previous selection S1.

Power Cable20302

Power CableVoltageCurrentLocation# of

MotorsM 1051.2121 20101.5412 301527133

S1

108

Fig 7-7: Specification operation S2 Built in Selection S1

7.5 Conclusion

Structures of the Network Model are simple; it contains the

entities and relationships between them. This property serves

complex scientific models, because it needs a simple model to be

understood by users.

Assigning owner and member for each relation in network

models helps scientific models to be strongly formed and integrated.

Network model suffers from difficulties in expressing many

to many relationships. Another disadvantage is that network model

disallows representing recursive links.

Motor Code2122

S2

Supplied Motors Link

Power CableMotor

Code20213022102310242

S1

Power Cable20302

109

Conclusion

Managing scientific database utilizing a mediated warehouse

architecture that provide a consistent interface to scientific data. It

reduces the overall storage requirements of the warehouse, while

maintaining access to all available data. Furthermore, our unique

view of inter-database correspondences and extensive use of meta-

data differentiate this approach from others while providing a

110

significant reduction in maintenance costs. It presents a general-

purpose approach to managing scientific data, allowing scientists to

better utilize the data they have worked so hard to produce.

The data which describes the system must be computed.

Computing this scientific data requires a database design. So

database theories used to rearrange scientific data.

A new method that manipulate data related to any system has

been developed so data can be computed.

Using the proposed database model for the scientific system, a

system analyze became easier and faster and a better understanding

of sequence patterns, application structures, and the complex

relationships between them will make structure prediction feasible.

Research in this area is based on the hope that in future when

buying any machine we get with it a database software that can be

used to understand the system and help in analyzing and

maintenance.

111

Appendix A

112

EF Codd's 12

Database Rules

EF Codd's 12 Database Rules

The relational data model was first developed by Dr. E.F. Codd, an

IBM researcher, in 1970. In 1985, Dr. Codd published a list of 12

rules that concisely defined an ideal relational database. These rules

have been used as a guideline for the design of all relational

database systems since then.

Codd's Rule #1. Data is Presented in Tables

113

http://www.frick-cpa.com/ss7/Theory_RelationalDB.asp#top%23top

• A set of related tables forms a database and all data is

represented as tables; the data can be viewed in no other way

• A table (a.k.a. relation or entity) is a logical grouping of

related data in tabular form (rows and columns)

• Each row (a.k.a. record or tuple) describes an item

(person, place or thing) and each row contains information

about a single item in the table

• Each column (a.k.a. field or attribute) describes a single

characteristic about an item

• Each value (datum) is defined by the intersection of a

row and column

• Data is atomic; there is no more than one value

associated with the intersection of a row and column

• There is no hierarchical ranking of tables

• The relationships among tables are logical; there are no

physical relationships among tables

Codd's Rule #2. Data is Logically Accessible

• A relational database does not reference data by

physical location; there is no such thing as the ‘fifth row in

the customers table'

114

http://www.frick-cpa.com/ss7/Theory_RelationalDB.asp#top%23top

• Each piece of data must be logically accessible by

referencing 1) a table; 2) a primary or unique key value;

and 3) a column

• EXAMPLE. A specific employee in the' Employee'

table (e.g., Mohammad ALi) and related information (last

name, first name, ID, phone number, salary, etc) constitute a

row. An employee’s last name is a column. The name ‘Doe’ is

a data value. Mohammad ALi’s last name can be precisely

located by referencing the ‘employee’ table, the appropriate

column (last_name) and a unique key value (employee_id)

Codd's Rule #3. Nulls are Treated Uniformly As Unknown

• Null must always be interpreted as an unknown value

• Null means no value has been entered; the value is not

known

• 'Unknown' is not the same thing as an empty string ("")

or zero

• EXAMPLE. If you pick up an item in a store and the

price is not marked, the price is unknown (NULL); it is not

free

115

http://www.frick-cpa.com/ss7/Theory_RelationalDB.asp#top%23top

• If not handled properly, nulls can cause confusion in

your database

• EXAMPLE. If you search for all of the authors whose

home City is not Tulkarem, the results will not include any

authors with NULL in the 'City' column. SQL is very literal.

You asked for authors where the City was NOT Tulkarem and

NULL means 'unknown.' A NULL value for 'City' may mean

that the City is Tulkarem and it may mean that it is not

Tulkarem; you just don't know. Because the database engine

can't tell for sure whether the City is not Tulkarem, a record

with NULL will not be returned

• Nulls propagate through arithmetic expressions (e.g., 2

+ NULL = NULL)

• Comparing a null to any value, including itself, returns

NULL

Codd's Rule #4. Database is Self-Describing

• In addition to user data, a relational database contains

data about itself

116

http://www.frick-cpa.com/ss7/Theory_RelationalDB.asp#top%23top

• There are two types of tables in a RDBMS: user tables

that contain the 'working' data and system tables contain data

about the database structure

• Metadata is data that describes the structure of the

database itself and includes object definitions (tables, indexes,

stored procedures, etc.) and how they relate to each other

• The collection of system tables is also referred to as the

system catalog or data dictionary

• System tables can be accessed in the same manner as

user tables

Codd's Rule #5. A Single Language is Used to Communicate

with the Database Management System

• There must be a single language that handles all

communication with the database management system

• The language must support relational operations with

respect to: data modification (i.e., SELECT, INSERT,

UPDATE, DELETE), data definition (i.e., CREATE,

ALTER, DROP) and administration (i.e., GRANT,

REVOKE, DENY, BACKUP, RESTORE)

117

http://www.frick-cpa.com/ss7/Theory_RelationalDB.asp#top%23top

• Structured Query Language (SQL) is the de facto

standard for a relational database language

• SQL is a ‘nonprocedural’ or ‘declarative’ language; it

allows users to express what they want from the RDBMS

without specifying the details about where it's located or how

to get it

Codd's Rule #6. Provides Alternatives for Viewing Data

• A relational database must not be limited to source

tables when presenting data to the user

• Views are virtual tables or abstractions of the source

tables

• A view is an alternative way of looking at data from

one or more tables

• A view definition does not duplicate data; a view is not

a copy of the data in the source tables

• Once created, a view can be manipulated in the same

way as a source table

• If you change data in a view, you are changing the

underlying data in the source table (although there are limits

on how data can be modified from a view)

118

http://www.frick-cpa.com/ss7/Theory_RelationalDB.asp#top%23top

• Views allow the creation of ‘custom tables’ that are

tailored to special needs

• EXAMPLE: By not including the columns with

sensitive information in a view definition, a view can be used

to restrict a user’s access to the data

• Views can be used to simplify data access by

‘predefining’ complex joins; the concept is similar to that of a

'saved query'

Codd's Rule #7. Supports Set-Based or Relational Operations

• Rows are treated as sets for data manipulation

operations (SELECT, INSERT, UPDATE, DELETE)

• A relational database must support basic relational

algebra operations (selection, projection; & join) and set

operations (union, intersection, division, and difference)

• Set operations and relational algebra are used to operate

on 'relations' (tables) to produce other relations

• A database that supports only row-at-a-time

(navigational) operations does not meet this requirement and

is not considered 'relational'

119

http://www.frick-cpa.com/ss7/Theory_RelationalDB.asp#top%23top

Codd's Rule #8. Physical Data Independence

• Applications that access data in a relational database

must be unaffected by changes in the way the data is

physically stored (i.e., the physical structure)

• EXAMPLE: The code in an application that accesses

data in a file-based database typically depends on the file

format (e.g., the code references a 'phone number' field that is

10 characters wide, is preceded by the 'zip code' field,

followed by the 'fax number' field...). If the layout of the data

in the file is changed, the application must also be changed. In

contrast, the storage and access methods (physical) used in a

relational database can change without affecting the user or

application’s ability to work with the data. The user still only

sees tables (logical structure)

• An application that accesses data in a relational

database contains only a basic definition of the data (data type

and length); it does not need to know how the data is

physically stored or accessed

120

http://www.frick-cpa.com/ss7/Theory_RelationalDB.asp#top%23top

Codd's Rule #9. Logical Data Independence

• Logical independence means the relationships among

tables can change without impairing the function of

applications and ad hoc queries

• The database schema or structure of tables and

relationships (logical) can change without having to re-create

the database or the applications that use it

Codd's Rule #10. Data Integrity Is a Function of the DBMS

• In order to be considered relational, data integrity must

be an internal function of the DBMS; not the application

program

• Data integrity means the consistency and accuracy of

the data in the database (i.e., keeping the garbage out of the

database)

• There are three types of data integrity: entity, domain,

and referential

• Within the database, data integrity can be enforced

procedurally or declaratively

121

http://www.frick-cpa.com/ss7/Theory_RelationalDB.asp#top%23top
http://www.frick-cpa.com/ss7/Theory_RelationalDB.asp#top%23top

• Declarative data integrity involves placing or

‘declaring’ constraints on columns

• Procedural data integrity is maintained through code

(i.e., through stored procedures or triggers)

Codd's Rule #11. Supports Distributed Operations

• Data in a relational database can be stored centrally or

distributed

• Users can join data from tables on different servers

(distributed queries) and from other relational databases

(heterogeneous queries)

• Data integrity must be maintained regardless of the

number of copies of data and where it resides

Codd's Rule #12. Data Integrity Cannot be Subverted

• There cannot be other paths into the database that

subvert data integrity; in other words, you can't get in the

'back door' and change the data in such a manner as data

integrity is violated

• The DBMS must prevent data from being modified by

machine language intervention

122

http://www.frick-cpa.com/ss7/Theory_RelationalDB.asp#top%23top
http://www.frick-cpa.com/ss7/Theory_RelationalDB.asp#top%23top

Appendix B

R Series RAW Power

Supply Manual

123

124

125

126

127

128

129

130

References

1. Gijs Van Tulder. 2003. Storing Hierarchical Data in a

Database. www.sitepoint.com.

2. Jennifer Cartier,John Rudolph,and Jim Stewart. 2001. The

Nature and Structure of Scientific Models. The National

Center for Improving Student Learning and Achievement in

Mathematics and Science (NCISLA).

3. Roman Frigg and Stephan Hartmann. 2005. Scientific Models.

4. Alqadi, Ziad and Abdelraheem Albashiti. 1997. Data III Plus.

Amman: Dara Alsafa'.

5. Bloor, Robin. 2004. The Failure of Relational Database.

Baroudi Bloor International Inc: http://www.baroudi.com.

6. Boudjlidi, Nacer. 2003. Database Systems: Theory and

Application. Halap-Syria: Sho'a' for publishing and science.

131

http://www.sitepoint.com/

7. Chen, Peter P. 2005. Entity-Relationship Modeling: Hstorical

Events, Future Trends, and Lessons Learned. Louisiana State

University: http://bit.csc.lsu.edu.

8. Elmasri and Navathe. 2004. Fundamentals of Database

Systems. Georgia, College of Computing: www-

static.cc.gatech.edu.

9. Fehmi, Mostafa A. Alwahab, Jmal Abdelmo'ti, Abdelaziz

Alhareri, Ezzat Shaddad and Ala' Eddin Sharqawi. 1993.

Computer and Databases. Egypt: Delta Books Group.

10.Floyd, Thomas L. 1999. Electronic Devices. New Jersey:

Prentice-Hall Inc.

11.Frick, David R. 2004. Characteristics of a Relational

Database. http://www.frick-cpa.com.

12.Hernandez, Michael J. 2002. Data Design Tips.

http://www.datatexcg.com.

13.Howe, David. 2001. Data Analysis for Database Design.

England: Butterworth-Heinemann.

14.Inmon, Bill. 2001. A Brief History of Database Design. DM

Review Magazine: http://www.dmreview.com.

132

15.Matko, Richard K. and Borut Zupancic. 1992. Simulation And

Modeling Of Continuous Systems. USA: Prentice Hall.

16.Pedersen, Alf A. 2004. Development Cycles: Entity

Relationship Modeling. Database Design Resource Web Site:

http://www.databasedesign-resource.com.

17.Tsichritzis, Dionysios C. and Frederick H. Lochovsky. 1982.

Data Models. New Jersey: Prentice - Hall.

18.T. Critchlow, K. Fidelis, M. Ganesh, R. Musick, T. Slezak.

Data Foundry : Information Management for Scientific Data.

U.S. DOE by LLNL.

133

	cover
	side cover
	Table of Contents
	thesis

